Blending Bayesian and frequentist methods according to the precision of prior information with applications to hypothesis testing
نویسنده
چکیده
The following zero-sum game between nature and a statistician blends Bayesian methods with frequentist methods such as p-values and con dence intervals. Nature chooses a posterior distribution consistent with a set of possible priors. At the same time, the statistician selects a parameter distribution for inference with the goal of maximizing the minimum Kullback-Leibler information gained over a con dence distribution or other benchmark distribution. In cases of hypothesis testing, the statistician reports a posterior probability of the hypothesis that is informed by both Bayesian and frequentist methodology, each weighted according how well the prior is known. As is generally acknowledged, the Bayesian approach is ideal given knowledge of a prior distribution that can be interpreted in terms of relative frequencies. On the other hand, frequentist methods such as con dence intervals and p-values have the advantage that they perform well without knowledge of such a distribution of the parameters. However, neither the Bayesian approach nor the frequentist approach is entirely satisfactory in situations involving partial knowledge of the prior distribution, the proposed procedure reduces to a Bayesian method given complete knowledge of the prior, to a frequentist method given complete ignorance about the prior, and to a blend between the two methods given partial knowledge of the prior. The blended approach resembles the Bayesian method rather than the frequentist method to the precise extent that the prior is known. The proposed framework o ers a simple solution to the enduring problem of testing a point null hypothesis. The blended probability that the null hypothesis is true is equal to the p-value or a lower bound of an unknown Bayesian posterior probability, whichever is greater. Thus, given total ignorance represented by a lower bound of 0, the p-value is used instead of any Bayesian posterior probability. At the opposite extreme of a known prior, the p-value is ignored. In the intermediate case, the possible Bayesian posterior probability that is closest to the p-value is used for inference. Thus, both the Bayesian method and the frequentist method in uence the inferences made. Similarly, blended inference may help resolve ongoing controversies in testing multiple hypotheses. Whereas the adjusted p-value is often considered the multiple comparison procedure (MCP) of choice for small numbers of hypotheses, large numbers of p-values enable accurate estimation of the local false discovery rate, a physical posterior probability of hypothesis truth. Each blended posterior probability reduces to either the adjusted p-value or the LFDR estimate by e ectively determining on a hypothesis-by-hypothesis basis whether the LFDR can be estimated with su cient accuracy. This blended MCP is applied to both a microarray data set and a more conventional biostatistics data set to illustrate its generality.
منابع مشابه
Blending Bayesian and frequentist methods according to the precision of prior information with an application to hypothesis testing
The following zero-sum game between nature and a statistician blends Bayesian methods with frequentist methods such as p-values and confidence intervals. Nature chooses a posterior distribution consistent with a set of possible priors. At the same time, the statistician selects a parameter distribution for inference with the goal of maximizing the minimum Kullback-Leibler information gained 1 a...
متن کاملComparison between Frequentist Test and Bayesian Test to Variance Normal in the Presence of Nuisance Parameter: One-sided and Two-sided Hypothesis
This article is concerned with the comparison P-value and Bayesian measure for the variance of Normal distribution with mean as nuisance paramete. Firstly, the P-value of null hypothesis is compared with the posterior probability when we used a fixed prior distribution and the sample size increases. In second stage the P-value is compared with the lower bound of posterior probability when the ...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملBayesian Fuzzy Hypothesis Testing with Imprecise Prior Distribution
This paper considers the testing of fuzzy hypotheses on the basis of a Bayesian approach. For this, using a notion of prior distribution with interval or fuzzy-valued parameters, we extend a concept of posterior probability of a fuzzy hypothesis. Some of its properties are also put into investigation. The feasibility and effectiveness of the proposed methods are also cla...
متن کاملParametric Empirical Bayes Test and Its Application to Selection of Wavelet Threshold
In this article, we propose a new method for selecting level dependent threshold in wavelet shrinkage using the empirical Bayes framework. We employ both Bayesian and frequentist testing hypothesis instead of point estimation method. The best test yields the best prior and hence the more appropriate wavelet thresholds. The standard model functions are used to illustrate the performance of the p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistical Methods and Applications
دوره 24 شماره
صفحات -
تاریخ انتشار 2015